INTRODUCTION

Lindane, a γ-isomer of Hexachlorocyclohexane organochlorine pesticide and is widely spread in the environment due to its long lifetime (Wauchope et al. 1992). Pesticide extensively employed for public health and agricultural purposes in developing countries. Because of its widespread use, lindane has become widely distributed in ecosystem and now a global pollutant. Several studies have revealed the presence of lindane above permissible limit in body fat, blood, milk and food commodities both in India and abroad (Samanta et al. 1999). It has been used widely as therapeutic Scabicide, Pediculicide and ectoparasiticide (Fidan et al. 2008). Presently, lindane also used in lotions, creams and shampoos for the control of lice and mites in humans (Safe, 1993). Compounds of this chemical class have very low water solubility but are highly soluble in lipids and bioaccumulated (Murphy, 1986). Toxic effects of lindane in mammals include convulsions, ataxia, prostration, damage to fatty tissues and inhibition of sperm motility in sea urchins (Nelson, 1990). It has been reported to induce oxidative stress by interacting with the cell membrane, triggering the generation of reactive oxygen species (ROS) and altering the level of antioxidant molecules which in turn cause severe physiological dysfunction in various organ systems (Bano and Bhatt, 2007). Recent studies indicate that pesticide intoxication produce oxidative stress by the generation of free radicals (Banerjee, 1999) and induce tissue lipid peroxidation (LPO) (Yavuz, 2005). ROS (Reactive oxygen species) arise as by-products of normal cellular metabolism or may be the consequence of exposure to certain chemicals (Kerr et al. 1996) and responsible for structural
and functional alterations in cells (Fernandez et al. 2003). Normal cellular functions depend on a balance between ROS (Reactive oxygen species) produced and antioxidant defense mechanisms present in the cell.

In search for these new chemical entities as modulators of xenobiotic metabolism, we searched literature on Ayurvedic medicinal plants. Several medicinal plants or their active principles have been used as antioxidants and in reducing the toxicity of xenobiotics. However, it based on the experience of traditional system of medicine from different ethnic societies. The medicinal plant Curcuma longa (Turmeric) has attracted the interest of research community due to its number of pharmacological activities (Srimal, 1997). Curcumin, an active component of turmeric (Curcuma longa linn) exhibits an antioxidant property. It is a yellow coloured phenolic pigment yield from the rhizome of turmeric (Family: Zingiberaceae). Earlier studies have shown that it is an effective antioxidant against oxidative tissue damage and inhibits ROS (Reactive oxygen species) production (Quiles et al. 2002) both, also acts as a scavenger of free radicals (Khanna, 1999). Therefore, the present study has been undertaken to evaluate the ameliorating effect of Curcumin on lindane induced biochemical and histopathological alterations in hepatic tissues of rat.

MATERIALS AND METHODS

Chemicals

Pure lindane 99.6% and Curcumin were purchased from Sigma Aldrich (St. Louis, Mo. USA). All other chemicals were of AR grade and purchased locally.

Experimental design

Forty-two male wistar rats (Weighing 130–150 g) were obtained from the animal house of the IITR (Industrial Institute of Toxicology Research). Animals were caged in seven groups (Each group having six rats) and given food & water add libitum. The animal room was maintained at 21–24°C and 40–60% relative humidity with 12-h light–dark cycles, the light cycle coinciding with the day light hours. After 2 weeks of acclimation, the groups were assigned at random to one of the following treatments: group A served as control, while groups B and C were treated with 30 mg lindane/kg body weight, up to 14 and 28 days respectively. Group D received Curcumin 100 mg/kg body weight up to 14 days than received lindane 30 mg/kg body weight up to next 14 days. Group E was given lindane 30 mg/kg body weight up to 14 days than received Curcumin 100 mg/kg body weight up to next 14 days. While group F was given lindane (30 mg/kg body weight) plus Curcumin (100 mg/kg body weight). The animal G received lindane 30 mg/kg body weight up to 14 days and then were kept for metabolism up to next 14 days. The dose of LD50 (Lethal Dose) (lindane), when administered orally to rats has been reported to be given at the rate of 88 mg/kg body weight (Gaines, 1959). Animals were treated orally with the tested compounds every other day for 28 days. The doses of lindane and Curcumin were calculated according to the animal's body weight before treatment.

Sample collection

Rats of each group were killed by decapitation at the end of the treatment period. Samples (Liver) were collected from the sacrificed animals and placed immediately on -20°C temperature. Frozen liver samples were thawed and 200 mg of samples was weighed and taken in 2ml of ice-cold saline for enzyme estimation. An amount of 200 mg of sample was weighed separately and taken in 2 ml of 0.02 M EDTA for GSH (Glutathion) estimation. Tissue sections were taken from liver & both kidneys for histopathological examination, which were fixed in 10% formalin. Organ homogenates were prepared using tissue homogenizer (IKA, Germany) under ice-cold condition. The homogenate was centrifuged for 10 min at 3000 rpm (Revolution per minute). The supernatant was used for following biochemical estimation.

Measurement of malondialdehyde

Malondialdehyde ($\text{C}_2\text{H}_2\text{O}_3$) occurs in lipid peroxidation and was measure in liver and kidney tissues after incubation at 95°C with thiobarbituric acid in aerobic conditions (P^* 3.4). The pink colour produced by these reactions was measure spectrophotometrically at 532 nm (Nanometer) to measure MDA (Malondialdehyde) levels (Shafiq, 1984).
Specific activity was defined as nanomole per milligram protein.

Measurement of Superoxide dismutase (SOD)

SOD (Super Oxide Dismutase) estimated as per the method (Madesh and Balasubramanian, 1998). It involved generation of superoxide by pyrogallol \((C_nH_{6n}O_3)\) auto oxidation and inhibition of superoxide-dependent reduction of the tetrazolium dye MTT \((C_{18}H_{16}BrN_2S)\) to its formazan \((CH_{4}N_{4})\), measured at 570nm. The reaction was terminated by the addition of dimethyle sulfoxide \((DMSO: C_2H_6O)\), which helps to solublize the formazan formed. The colour evolved to stable for many hours and expressed as SOD (Super Oxide Dismutase) units (Have been expressed as U/g of protein) [One unit SOD (Super Oxide Dismutase) is amount (µg) of protein required to inhibit the MTT reduction by 50%].

Measurement of Catalase (CAT)

Activities of Catalase in liver homogenate were estimated (Bergmeyer et al. 1983) Diluted (1:10) of homogenate was used for estimation of catalase. The optical density recorded at every 10 sec for 1 min at 240 nm (Nanometer) against water blank.

Measurement of Glutathione-S-transferase (GST)

GST activity measured by the method (Habig et al. 1974). Assay for the activity of GST based on the spectrophotometric determination of a CDNB (1-Chloro2, 4-Dinitrobenzene: \(C_6H_5ClN_2O_4\)) conjugate formed with glutathione in a GST coupled. The conjugate formation is GST (Glutathione-S-transferase) catalyzed and therefore is a measure of GST activity. The changes in absorbance recorded at 340 nm and the enzyme activity calculated as nmol CDNB conjugate formed /min/mg/protein using a molar extinction coefficient of 9.6x103 M-1 cm-1.

Measurement of Reduced glutathione (GSH)

Reduced glutathione was determined (Jollow et al. 1974). The method described is based on the development of a yellow colour when Ellan's reagent \((DTNB: C_{14}H_{28}N_2O_8S_2)\) is added to sulphydryl compounds. The colour develops fairly stable for 10 minutes. The reaction read at 412 nm.

Histopathological examination

Small representative pieces (5 mm thickness) of respective organs viz., Liver collected in 10% neutral buffered formalin solution. After 3-4 days fixation, tissues were trimmed to 2 mm thickness by sharp blade. Further processing done by dehydrating the tissue in ascending grades of ethyl alcohol, clearing in xylene \((C_{10}H_{8})\), then tissue embedded into melted paraffin wax (melting point 58°C), after hardening of wax, tissue blocks were prepared & sections cut with microtome to obtain 4-5 µ thick sections. These sections hydrated by treating with descending grades of alcohol. These tissues were double stained with hematoxyline and eosin stain. Sections treated with xylene to remove water & mounted with cover slip using DPX as mounting media. Sections examined with a NIKON (Eclips 8i) DXM 1200X light microscope (Japan).

Statistical analysis

All data were analyzed via ANOVA using Graph Pad in Stat Software Inc., v. 3.06, San Diego, USA followed by Tukey tests and the statistical significance was considered at P<0.05.

RESULT AND DISCUSSION

Fig. 1 demonstrated that the rats treated with lindane alone for 14 and 28 days caused extensive liver injuries characterized by vacuolar degeneration of hepatocytes and massive degradation of central vein with marked necrosis and fatty changes in parenchyma. This may occur due to perportal lymphocytic infiltrations in liver tissue mainly through the portal tract, where the inflammation mainly initiates (Ramadori et al. 2008).
Control (a) Liver section of control rat demonstrated the normal hepatocellular structure.

Exposure (14 days) (b) Section of the liver of lindane alone (for 14 days) treated rat showed Marked necrosis in centrilobular area.

Exposure (28 days) (c) Section of the liver of lindane alone (for 28 days) treated rat showed fatty changes and degenerative changes in hepatic parenchyma.

Pre-treatment (d) Hepatic section of pre-treated (with Curcumin) rat depicted congestion in central and portal veins and showing normal structure of hepatocytes.

Post-treatment (e) Hepatic section of post-treated (with Curcumin) rat showing normal structure of hepatocytes with mild congestion in luman.

Metabolized (f) Section of the liver of lindane metabolized rat Hepatocytes showing degeneration with granular cytoplasm and
In addition, enhanced lipid peroxidation induced by free radicals which are generated from lindane (Padma et al. 2011), the covalent binding of free redicals, to sulphydryl groups of protein results in cell necrosis and lipid peroxidation induced by decrease in glutathione in the liver which causes hepatocellular injury (Rajesh and Latha, 2004). In this regard, Padma et al. (2012) have documented that lindane causes centrilobular hypertrophy and necrosis in the liver. While the Control animals and pre & post-treated animals showed nearly normal hepatic architecture. However, the animals treated with both lindane and Curcumin showed reduction in liver damage with slight necrosis and fatty vacuoles in the hepatocytes with focal vascular congestion. Animals of metabolized group showed degeneration of hepatocytes with granular cytoplasm and vacuolations.

Oxidative damage primarily occurs through the production of reactive oxygen species (ROS), including hydroxyl radicals and hydrogen peroxide that subsequently react with biological molecules, causing damage to membranes and other tissues (Banerjee et al. 1999). The present study reports that Curcumin ameliorates the lindane induced toxicity. In agreement with previous studies, we have shown that lindane induced hepatic damage in exposed to male rats (Videla et al. 1990) and that this may be due to depletion in cellular thiol (SH) levels (Mullar, 1986). Increased generation of superoxide radicals lead to oxidation and depletion of GSH (Glutathion) with a lipid peroxidative response. Glutathione, an endogenous antioxidant plays a critical role in detoxification of reactive oxygen species and free radicals.

Several studies using animal model have shown that the use of phytochemicals from plant extracts were protective against the oxidative stress induced by many toxic agents mostly by modulating the GSH (Glutathion) and GST levels (Shanmugarajan et al. 2008). GST
(Glutathione-S-transferase) catalyses the reaction between thiol (SH) group of GSH and potential alkylating agents, such as lindane, thereby neutralizing the electrophilic sites and rendering them more water soluble. This enzyme is therefore a major component of the GSH (Glutathion) redox cycle. The activity of this enzyme is a crucial factor in determining the sensitivity of cells to broaden the range of toxic chemicals. Curcumin elevates GSH (Glutathion) and GST (Glutathione-S-transferase) levels in presence or absence of lindane and this may be responsible for the protective effect of the Curcumin against lindane toxicity.

Several enzymes in hepatic tissues have considered as long effective biochemical markers to understand the early injury. Table-1 depicts the enzymatic antioxidants activities in the hepatic tissues of control and experimental rats. The present study revealed that the administration of lindane resulted in significant (P<0.001) rise in hepatic lipid peroxidation (LPO). Lipid peroxidation is a free radical mediated chain reaction, which can be initiated by hydroxyl radicals and attack polyunsaturated fatty acids in membranes resulting in oxidative damage (Hfaiedh et al. 2012). Lindane exposed rat have shown marked increase lipid peroxidation in liver. It has been shown that lindane interacts with cell membranes resulting in lipid peroxidation. Lindane elevates lipid peroxidation in rat's hepatic tissue exposed to lindane toxicity and this attributed to decrease antioxidant activities (Padma et al. 2012). The rise in lipid LPO (Lipid peroxidation) level may be due to the increase in generation of the free radicals. These free radicals attack cell structure with the body causing damage to cell membrane and enzyme system. In this regard, Vijayvel et al. (2006) documented that free radical play a prominent role in elevating LPO and potentially leading to cellular damage. Induction of cytochrome P450 and other microsomal enzyme by various pesticides, e.g. carbamate, has been reported and it is possible that lindane mediated free radical generation could be through induction of these enzyme (Padma et al. 2012). Increase malondiildhyde level in tissues of animals exposed to toxic agents and this effect was attenuated by the use of various plant extracts (Guldure et al. 2010). The dietary intake of these extracts is considered to be relatively safe and without undesirable side effects (Xavier et al. 2004).

The increase in hepatic LPO (Lipid peroxidation) content produced by lindane was significantly (P<0.001) lowered by Pre and post feeding of Curcumine. The result obtained from this present study correlates with the previous findings. The study showed that the pre and post treatment of Curcumin attenuates MDA level in the presence of lindane. This reduction in MDA level may be as a result of increase GSH (Glutathion) and GST activities in the presence of Curcumin. These results are similar to the observation of another study where gallic acid shown to decrease LPO (Lipid peroxidation) level in carbon tetrachloride induced damage in albino rats (Jadon et al. 2007). Similarly, El-Dermerdash et al. (2009) have been reported that treatment with Curcumin reduced the level of LPO (Lipid peroxidation) and induced the activities of the antioxidant enzymes, the levels of SH-groups in Super Oxide Dismutase and haloperidol respectively.

Hepatic GSH (Glutathione) level was significantly (P<0.001) reduced on lindane administration compared to control. The observed decreased GSH level in both hepatic tissue may be due to utilization of non-protein thiols by increase ROS under lindane induced oxidative stress (Bano and Bhatt, 2007). SUPER OXIDE DISMUTASE and CAT activities in hepatic tissues were decreased significantly (P<0.001) in lindane exposed groups compared to control (Table-1). Superoxide dismutase (SOD) and Catalase (CAT) are two important enzymatic antioxidants that act against toxic oxygen free radicals such as superoxide (O$_2^-$) and hydroxyl ions (OH-) in biological systems (Zelko et al. 2002). CAT (Catalase) prevents oxidative hazards by catalyzing the formation of H$_2$O and O$_2$ from H$_2$O$_2$ (Kumar and Kuttan, 2003). In this regard, Padma et al. (2011) have documented that lindane cause depletion in activity of CAT in liver of female Wistar rats. Similar findings were reported (Khan, 2006) after exposure of organophosphorus and pyrethroid in liver of mice. Lindane exposure usually decreases the activities of Super Oxide Dismutase and CAT (Anilkumar et al. 2009). This implies that lindane causes an increased intracellular accumulation of H$_2$O$_2$ and...
superoxide radicals. The accumulation will further contribute to the membrane damage via lipid peroxidation (LPO). Present study, we have observed, a decrease in the SOD and CAT activities of the liver tissues on lindane administration. Pre and post treatment with Curcumin caused a significant increase in hepatic (P<0.001) in SOD and CAT activities, suggesting an active protective role by the components present in Curcumin in ameliorating free radical-induced damage (Unnikrishnan and Rao, 1995). In agreement with our observation Quiles et al. (2002) reported that Curcumin inhibits ROS production, which cause oxidative stress.

GST (Glutathione-S-transferase) plays an important role in the detoxification of toxic electrophiles by conjugating them with glutathione. GST is a potent antioxidant that provides cells with a substantial degree of protection against oxidative stress. Lindane significantly (P<0.001) decreased GST activity in hepatic (Table-1).

Table 1: STATISTICAL REPRESENTATION OF VARIOUS PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Group E</th>
<th>Group F</th>
<th>Group G</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO</td>
<td>26.8±0.304</td>
<td>42.89±0.191***</td>
<td>51.42±0.287***</td>
<td>30.67±0.558**</td>
<td>31.03±0.367**</td>
<td>38.68±0.207**</td>
<td>42.70±0.386***</td>
</tr>
<tr>
<td>GST</td>
<td>1.26±0.138</td>
<td>0.82±0.007***</td>
<td>0.78±0.007***</td>
<td>1.20±0.055</td>
<td>1.03±0.037</td>
<td>0.98±0.032**</td>
<td>0.83±0.012**</td>
</tr>
<tr>
<td>GSH</td>
<td>30.97±0.001</td>
<td>22.68±0.001***</td>
<td>20.12±0.001***</td>
<td>28.22±0.002</td>
<td>26.99±0.00**</td>
<td>24.45±0.000**</td>
<td>22.90±0.000**</td>
</tr>
<tr>
<td>CAT</td>
<td>78.68±0.17</td>
<td>55.66±1.35***</td>
<td>42.89±1.518***</td>
<td>67.86±9.752**</td>
<td>65.99±13.421**</td>
<td>58.22±0.932**</td>
<td>56.02±0.856***</td>
</tr>
<tr>
<td>SOD</td>
<td>5.12±0.056</td>
<td>2.42±0.150***</td>
<td>1.21±0.392***</td>
<td>5.00±0.311</td>
<td>4.99±0.211</td>
<td>3.99±0.188**</td>
<td>2.99±0.233***</td>
</tr>
</tbody>
</table>

The decrease in GST activity might be responsible for lindane accumulation in the hepatic tissues of rat. In support of our findings Padma et al. (2011) has been reported that lindane intoxication decreases the GST level in rat liver (Spychala, 2000). Showed a significant decrease in GST in male mice when treated with lindane. In our study, Pre and post treatment with Curcumin caused a significant increase in hepatic (P<0.001) GST level in compared to lindane treated rats. This may be due to the Curcumin has been reported as potent scavenger of variety of ROS (Reddy and Reddy, 1994) exhibiting anti-inflammatory activity as well as antioxidant properties (Unnikrishnan and Rao, 1995). The phenolic and the methoxy group on the phenyl ring and the 1, 3 diketone systems seems to be important structural features that can be potent in scavenging free radicals and the phenolic group with a methoxy at the ortho position is especially effectual for the antioxidant activity (Priyadarsini, 2003).

CONCLUSION

The result of the present study demonstrate that the lindane induced oxidative damage on the liver by enhancing lipid peroxidation and diminishing enzymatic (CAT (Catalase), GST (Glutathione-S-transferase) and SOD (Super Uxide Dismutase)) and non-enzymatic Glutathion (GSH) antioxidant status. Curcumin diminished lindane induced oxidative stress probably through its free radical scavenging, anti-lipid peroxydative and antioxidant activities in the liver. Thus, the results of our investigations suggest that Curcumin has protective effects on oxidative stress induced by lindane. Curcumin can be a potent antioxidant in the liver and kidneys. These organs are highly prone to oxidative stress against lindane induced toxicity and hence may have useful properties as a natural antioxidant supplement, capable of preventing hepatic damage caused by oxidative stress and helps in normal functioning of these vital organs.

ACKNOWLEDGMENT

Authors are thankful to Head, Department of Zoology, Institute of Basic Sciences, Bundelkhand University, Kanpur Road, Jhansi- 284128. India for providing laboratory facility. The study was part of PhD
thesis. The authors declare that there is no conflict of interest.

REFERENCES

Hfaiedh N, Claude JM, Abdelfettah E. (2012). A combination of ascorbic acid and α-tocopherol or a combination of Mg and Zn are both able to reduce the adverse effects of lindane-poisoning on rat brain and liver. Journal of Trace Elements in Medicine and Biology.

Priyadarshini KI, Maity DK, Naik GH, Kumar MS, Unnikrishnan MK, Satav JG. (2003). Role of ns and

