Journal of Experimental Research	Slime Producing Multidrug Resistant Bacterial Isolates and Dipstick Assay for Nitrite And Leucocyte Esterase in Urine Specimens of Antenatal Patients in Uyo, Nigeria.
September 2019, Vol 7 No 3	Akinjogunla OJ ¹ , Umo AN ² , Udoh MD ³ .
Email: editorinchief.erjournal@gmail.com editorialsecretary.erjournal@gmail.com Received: 9th November, 2019	¹ Department of Microbiology, Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State. ² Department of Medical Microbiology and Parasitology,
Accepted for Publication: 8th Aug., 2019	Faculty of Clinical Science, University of Uyo, Akwa Ibom State. Department of Microbiology, Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State
	*Author for Correspondence: papajyde2000@yahoo.com

ABSTRACT

The slime producing multidrug resistant bacteria isolates and dipstick assay for nitrite and leucocyte esterase in the mid-stream urine (MSU) specimens of antenatal patients were determined using standard bacteriological technique, Congo red agar and urine dipsticks. Of the 245 MSU specimens collected from the subjects, 30.2 % had bacterial counts $\geq 10^5$ CFUml⁻¹, while 69.8 % MSU had bacterial counts 10^{5} CFUml⁻¹. The highest significant bacteriuria (SBU) was obtained among the subjects aged 21-30 yrs, while the subjects aged \geq 41 yrs had the lowest SBU. A total of 30 (12.2%) and 42 (17.1%) MSU were positive for nitrite and leucocyte esterase, respectively. The MSU specimens with the highest SBU and occurrence of nitrite and leucocyte esterase were obtained from the subjects in their second trimester. The subjects in their first trimester harboured the highest numbers of bacterial isolates (n=135), while those in their third trimester had the lowest numbers (n=112). The slime producing bacterial isolates in decreasing order was CoN- Staphylococcus spp $(18.0\%) \ge S$. aureus (15.0%) S. pyogenes / E. co (14.0%)K pneumoniae (12.0%) ≥ P. aeruginosa (11.0%) E. faecalis (9.0%) Pr≥teus spp (7.0%). S. aureus were highly s≥nsitive to Ceftriaxone; S. pyogenes were moderately sensitive to Nalidixic acid; ≥75.5 % E. coli showed sensitivity to Ciprofloxacin, \geq 72.0 % Proteus spp were sensitive to Gentamycin, while between 33.3 % and 41.7 % S. pyogenes and E. faecalis were resistant to Amoxicillin and Erythromycin. Of the 376 isolates, 107 were non-MDR isolates, while 215 were MDR isolates. Among the MDR isolates, 113 isolates were resistant to ≤ 4 antibiotics, while 102 isolates were resistant to between 5 and 10 antibiotics. The findings of this study showed the needs to continuously monitor the antibiotic susceptibility profiles of slime producing bacteria implicated in UTI and also endeavor to avert and/or curtail slime-associated infections.

Key Words: Antenatal, Trimester, Slime, Antibiotics, Nitrite, Leucocvte Esterase, Uvo.

INTRODUCTION

extracellular material consisting of al. 2015). The apparent reduction in immunity of exopolysaccharides, glycoproteins and pregnant women encourages the growth of glycolipids (Akinjogunla et al. 2018). Slime microorganisms and the physiological changes production has been considered as a significant that occur in urinary tracts during pregnancy can virulence factor of some bacterial strains cause healthy women to be more susceptible to (Ammendolia et al. 1999). Slime production serious complications due to UTI. The urinary facilitates bacterial adherence to smooth surfaces tract infections are the most common bacterial such as prosthetic medical devices and catheters; infections during pregnancy accounting for plays a role in the establishment and severity of approximately 10% of hospital visits (Millar and infection (Ammendolia et al. 1999), and protects Cox, 1997). These infections can be bacteria from desiccation and antibiotics, thus, asymptomatic or symptomatic bacteriuria resulting in antimicrobial resistance (Akyar et al. occurring in 5–10% and 1–3% among pregnant 1998; Ammendolia et al. 1999). Bacterial slime women, respectively (Gilstrap has been associated with sepsis, including 2001). Some patients with untreated intravenous-catheter-related bacteremia and asymptomatic bacteriuria develop symptomatic other prosthetic device infections (Rupp and cystitis (Barnick and Cardozo, 1991). Pregnancy Archer, 1994).

The urinary tract infection (UTI) and its associated complications are the cause of nearly Slime is a viscous, loosely bound, 150 million deaths per year worldwide (Amiri et and Ramin. enhances the progression from asymptomatic to pyelonephritis and adverse obstetric outcomes Esterase such as prematurity, low birth weight, increased 2007). Gilstrap and Ramin, 2001).

detected in the urine samples. The presence of presence of leucocyte esterase. each of these parameters in urine has its clinical significance and several studies have linked the Bacteriology of the Urine Specimens presence of nitrite and leucocyte esterase to significant bacteriuria (Charles, 2011; Ratna and uncentrifuged, MSU specimens was aseptically Sharan, 2017). Nitrites are only found in urine inoculated onto dried plate of Cysteine Lactose when uropathogenic bacteria, especially Gram- Electrolyte Deficient (CLED) agar using a sterile negative rod bacteria in the family calibrated drop that delivered 0.002 ml of urine enterobacteriaceae, convert urinary nitrates to specimen. The plates were aerobically incubated nitrites, while the leucocyte esterase assay is an at 37 °C for 24 hrs. After incubation, the colonies indirect measure of pyuria as it detects the on each plate were observed, enumerated and production of this enzyme by the host's counts of $>10^5$ CFU/ml were considered as polymorphonuclear cells (Semeniuk and significant bacteriuria (SBU). The cultures with Church, 1999). In this study the occurrence of significant growth were further subcultured onto slime producing multidrug resistant bacteria plates of nutrient agar, aerobically incubated at isolates and dipstick assay for nitrite and 37°C for 24 hrs, maintained on nutrient agar slant leucocyte esterase in the MSU specimens of at 4°C, characterized and identified using their antenatal patients were determined.

MATERIALS AND METHODS

Collection of Specimens

A total of 245 clean-catch mid-stream urine using sterile containers from pregnant women (TET, 30 µg),_Ceftriaxone (CTX, 30 µg), (aged ≤ 20 to between October, 2017 and September, 2018 in (NIT, 300 µg), Amoxicillin (AMO, 25 µg), received antibiotic treatment for the previous one determined by disc diffusion method (CLSI, week prior to specimen collection. The MSU collection.

symptomatic bacteriuria which could lead to Dipstick Test for Nitrite and Leukocyte

The nitrite and leukocyte esterase in MSU morbidity and mortality for mother and child specimens of pregnant women were detected (Blomberg et al. 2005; Macejko and Schaeffer, using urine dipsticks (Medi-Test Combi 10 SGL, Escherichia coli and species of Macherey-Nagel, Germany). The dipstick was Klebsiella, Staphylococcus and Enterococcus dipped into fresh uncentrifuged MSU specimen have been reported as the cause of UTI among and left for approximately 5 secs before removing pregnant women (Delzell and Lefevre, 2000; it. A colour change of the dipstick from colourless to pink or red within 60 secs indicated nitrites, Many parameters such as bilirubin, glucose, while a colour change of the dipstick from offblood, nitrites and leucocyte esterase may be white to purple within 2 mins indicated the

Each of the uniformly mixed, colonial appearances, Gram staining reaction, biochemical and sugar fermentation tests.

Antibiotic Susceptibility Testing of Bacterial Isolates

In vitro susceptibility of the bacterial (MSU) specimens were aseptically collected isolates to Ampicillin (AMP, 10 µg), Tetracycline 40 yrs2, at different gestational Nalidixic acid (NA, 30 µg), Ciprofloxacin (CIP, 5 age/trimesters, attending antenatal clinics µg), _Gentamycin (GEN, 10 µg), Nitrofurantoin Uyo, Nigeria. Verbal informed consent was Erythromycin (ERY, $15 \mu g$) and obtained from each pregnant woman who had not Chloramphenicol (CHL, 3 µg) (Oxoid, UK) was 2005). Ten microliters (10 μ L) of each bacterial specimens were transported in cooler boxes to isolate, prepared directly from an overnight agar Microbiology Laboratory, University of Uyo, for plate and adjusted to 0.5 McFarland Turbidity bacteriological analysis within 1-4 hrs of Standard, was inoculated onto each plate of Mueller Hilton Agar (MHA). The antibiotic discs were aseptically placed on the surfaces of the culture plates with a sterile forceps and gently pressed to ensure even contact. The plates were

An Official Publication of Enugu State University of Science & Technology ISSN: (Print) 2315-9650 ISSN: (Online) 2502-0524 This work is licenced to the publisher under the Creative Commons Attribution 4.0 International License.

sizes given by CLSI guidelines (CLSI, 2005).

Resistance Index

index was determined using the formula MAR=x/y, where 'x' was the number of antibiotics to which test isolate displayed resistance and 'y' was the total number of evaluated for sensitivity. Isolates that were resistant to three or more antibiotics were taken to be multiple antibiotic resistant (Jan et al. 2002; Akinjogunla et al. 2017).

Isolates

Slime producing *bacterial* isolates were detected using Congo red gar. The Congo red stain, prepared as a concentrated aqueous solution, was autoclaved at 121 °C for 15 mins. The brain heart infusion (BHI) agar with sucrose was also prepared and autoclaved at 121 °C for 15 mins. The Congo red stain was added to the autoclaved BHI agar with sucrose at 55 °C. Each of the test isolates was streaked on each Congo red agar plate and aerobically incubated for 24-48 hrs at 37 °C. Formation of black colonies with dry crystalline consistency indicated slime production (Freeman et al. 1989; Akinjogunla et al. 2018).

RESULTS

The occurrence of nitrite, leucocyte esterase and significant bacteriuria (SBU) in MSU specimens of pregnant women (n=245) based on ages and trimesters are presented in Tables 1 and 2. Of the 245 MSU specimens collected from the pregnant women, 74(30.2%)had bacterial counts $\geq 10^5$ CFUml⁻¹; indicating significant bacteriuria (SBU), while 171 (69.8 %) MSU specimens had bacterial counts $\leq 10^5$ CFUml⁻¹. The highest SBU was obtained among the pregnant women aged 21-30 yrs (n=25, 38.5 %), while the pregnant women aged ≥ 41 yrs had

incubated at 37 °C for 18 hr; inhibitory zones the lowest SBU (n=11, 19.3 %). A total of 30 were observed and measured in millimeters (12.2 %) and 42 (17.1 %) MSU specimens were (mm) using a ruler. The interpretation of the positive for only nitrite and leucocyte esterase measurement as sensitive and resistant was made respectively, while 20 (8.2 %) MSU specimens according to the standard interpretative zone were positive for both nitrite and leucocyte esterase (Table 1). Regarding the trimester, the highest proportion of MSU specimens positive **Determination of Multiple Antibiotic** for nitrite (16/81, 19.8 %), leucocyte esterase (22/81, 27.2 %) and also with the highest SBU Multiple antibiotic resistance (MAR) (31/81, 38.3%) were obtained from the pregnant women in the second trimester, followed by those in their third trimester (23/75, 30.7 %) and first trimester (20/89, 22.5%), respectively (Table 2)

The occurrences of bacterial isolates in the antibiotics to which the test isolates has been MSU cultures of the pregnant women with respect to trimesters and ages are shown in Table 3. The pregnant women in the first trimester harboured the highest proportion of bacterial isolates (n=135, 35.9 %), followed by the pregnant women in the second trimester with 34.3 **Detection of Slime Producing Bacterial** % (n=129) isolates, while those in the third trimester had the lowest proportion (n=112, 29.8 %). The MSU cultures of the pregnant women had seven bacterial genera comprising Escherichia, Staphylococcus, Streptococcus, Proteus, Pseudomonas, Klebsiella and *Enterococcus* (Table 3). With respect to the ages of the subjects, the predominant bacterial isolate was E. faecalis, S. pyogenes, CoN Staphylococcus spp and K. pneumoniae for age group ≤ 20 yrs, 21-30 yrs, 31-40 yrs and 41 yrs, respectively

(Table 3).

The percentage occurrence of slime producing urinary bacterial isolates in decreasing order was as follows: CoN- Staphylococcus spp $(18.0\%) \ge S.$ aureus (15.0%) S. pyogenes / E. coli (14.0%) \geq K pneumoniae (12.0%) *P*. aeruginosa (11.0%) $\geq E$. faecalis (9.0%) *Proteus* spp (7.0%) (Fig 1).

The results of the marked variabilities in the antibiotic sensitivity profiles of the urinary bacterial isolates are shown in Tables 4 and 5. Ciprofloxacin and Ceftriaxone showed high antibiotic activities against S. aureus, CoN-Staphylococcus spp and E. faecalis with percentage sensitivities ranging from 66.7 % to 80.0%; S. pyogenes were moderately sensitive to Nalidixic acid, Gentamycin and Ceftriaxone with percentage sensitivities ranging from 54.2 % to 58.3 %, while between 33.3 % and 41.7 % *S. pyogenes* and *E. faecalis* were resistant to Amoxicillin and Erythromycin (Table 4). *Escherichia coli*, the predominant isolate among the Gram negative urinary bacteria obtained, were highly sensitive to Ceftriaxone (75.5 %), Amoxicillin (71.7 %) and Ciprofloxacin (77.4 %). More than 72.0 % Proteus spp and *K pneumoniae* were sensitive to Gentamycin, while \geq 31.7 % *E. coli*, *Proteus* spp., *P. aeruginosa* and *K pneumoniae* were resistant to Tetracycline (Table 5).

The multiple antibiotic resistance (MAR) indices of resistant bacterial isolates are shown in

Table 6. Fifty-four (14.4%) isolates were sensitive to all the antibiotics, 107 (13.3%) were non-MDR isolates, while 215 (57.2%) were MDR isolates. Of the 215 MDR isolates, 67 isolates were resistant to three antibiotics, 46 isolates were resistant to four antibiotics, while 102 isolates were resistant to between 5 and 10 antibiotics. The MDR *E. faecalis, Proteus* spp and *P. aeruginosa* had MAR indice ranging from of 0.3 to 0.8, while the MAR indice of *K. pneumoniae and* CoN *Staphylococcus* spp ranged from 0.3 to 0.5 (\leq 5 antibiotics) and 0.3 to 0.7 (\leq 7 antibiotics), respectively (Table 6).

 Table 1: Occurrence of Nitrite, Leucocyte Esterase and Significant Bacteriuria in Urine

 Specimens of Pregnant women Based on Ages

Age (Yrs)	No of Specimens Collected	Specimens without SBU No (%)	Specimens with SBU No (%)	Specimens with NIT No (%)	Specimens with LE No (%)	Specimens with NIT + LE No (%)
≤ 20	41	26 (63.4)	15 (36.6)	6 (14.6)	8 (19.5)	2 (4.9)
21-30	65	40 (61.5)	25 (38.5)	12 (18.5)	18 (27.7)	10 (15.4)
31-40	82	59 (72.0)	23 (28.0)	8 (9.8)	12 (14.6)	6 (7.3)
≥ 41	57	46 (80.7)	11 (19.3)	4 (7.0)	4 (7.0)	2 (3.5)
Total	245	171 (69.8)	74 (30.2)	30 (12.2)	42 (17.1)	20 (8.2)

Keys: SBU: Significant Bacteriuria; NIT: Nitrite; LE: Leucocyte Esterase; Values in parenthesis represent percentages

Table 2: Occurrence of Nitrite, Leucocyte Esterase and Significant Bacteriuria in UrineSpecimens of Pregnant women Based on Trimesters

Ν	lo of Specimens	Specimens without SBU	Specimens with SBU	Specimens with NIT	Specimens with LE	Specimens with NIT + LE
Trimester	Collected	No (%)	No (%)	No (%)	No (%)	No (%)
1	89	69 (77.5)	20 (22.5)	6 (6.7)	8 (9.0)	3 (3.4)
2	81	50 (61.7)	31 (38.3)	16 (19.8)	22 (27.2)	11 (13.6)
3	75	52 (69.3)	23 (30.7)	8 (10.7)	12 (16.0)	6 (8.0)
Total	245	171 (69.8)	74 (30.2)	30 (12.2)	42 (17.1)	20 (8.2)

Keys: SBU: Significant Bacteriuria; NIT: Nitrite; LE: Leucocyte Esterase; Values in parenthesis represent percentages

Akinjogunla et al - Slime Producing Multidrug-resistant Bacterial Isolates in Urine

		Trimester			Age	(Yrs)		
Bacterial Isolates	1st	2nd	3rd	≤ 20	21-30	31-40	≥ 41	Total
	No (%)	No (%)	No (%)	No (%)	No (%)	No (%)	No (%)	No (%)
E. coli	37 (34.9)	36 (34.0)	33 (31.1)	17 (16.0)	28 (26.4)	33 (31.1)	28 (26.4)	106(28.2)
S. aureus	20 (27.0)	29 (39.2)	25 (33.8)	14 (18.9)	22 (29.7)	23 (31.1)	15 (20.3)	74(19.7)
Proteus spp	8 (24.2)	10 (30.3)	15 (45.5)	6 (18.2)	9 (27.3)	8 (24.2)	10 (30.3)	33(8.8)
S. pyogenes	21 (43.8)	15 (31.3)	12 (25.0)	10 (20.8)	15 (31.3)	14 (29.2)	9 (18.8)	48(12.8)
CoN Staphylococcus spp	15 (60.0)	10 (40.0)	0 (0.0)	5 (20.0)	5 (20.0)	12 (48.0)	3 (12.0)	25(6.6)
P. aeruginosa	14 (34.1)	17 (41.5)	10 (24.4)	8 (19.5)	11 (26.8)	16 (39.0)	6 (14.6)	41(10.9)
K. pneumoniae	5 (31.3)	4 (25.0)	7 (43.8)	2 (12.5)	3 (18.8)	2 (12.5)	9 (56.3)	16(4.3)
E. faecalis	15 (45.5)	8 (24.2)	10 (30.3)	8 (24.2)	8 (24.2)	11 (33.3)	6 (18.2)	33(8.8)
Total	135 (35.)	129 (34.3)	112 (29.8)	70(18.6)	101(26.9)	119(31.6)	86(22.9)	376(100)

 Table 3: Occurrence of Bacterial Isolates in Urine Specimens of Pregnant Women

 Based on Trimesters and Ages

Keys: CoN: Coagulase negative; Values in parenthesis represent percentages

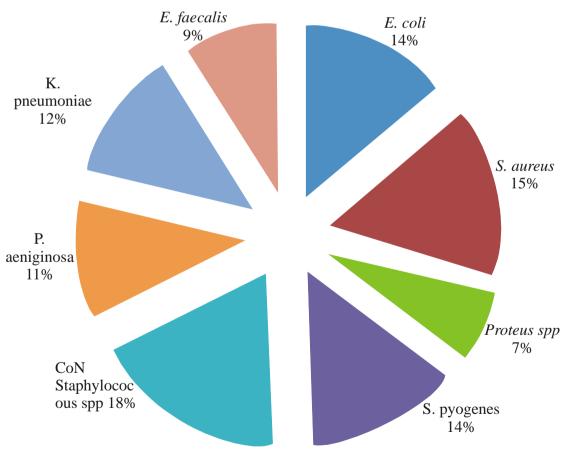


Fig I: Percentage Occurrences of Slime Producing MDR-Bacterial Isolates from Urine Specimens of Pregnant Women

S. anreas (n=74) S. progenes (n=74) S. progenes (n=48) Colv-Singly/incoccus spp (n=25) E. Jacca $\overline{N_0 N_0}$		Table	4: Antibio	Table 4: Antibiotic Susceptibility Profile of Gram Positive Urinary Bacterial Isolates from Pregnant Women	tibility Pr	ofile of G1	ram Positi	ve Urinary	Bacterial	Isolates fi	rom Pregn	ant Wom	en
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S.	aureus (n=7	74)		pyogenes (n=	-48)	CoN- Stap	hylococcus s	pp (n=25)	E. fae	calis (n=33)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Antibiotics	$\frac{S}{No \%}$	$\frac{1}{N_0 \%}$	<u>R</u> No %	$\frac{S}{N_0 \%}$	$\frac{1}{No \%}$	$\frac{R}{No \%}$	<u>S</u> No %	<u> </u>	<u>R</u> No %	S No %	<u>I</u> No %	$\frac{R}{No \%}$
38 (51.4) 24 (32.4) 12 (16.2) 18 (37.5) 10 (20.8) 20 (41.7) 10 (40.0) 6 (24.0) 9 (36.0) 12 (16.2) 1 52 (70.3) 8 (10.8) 14 (18.9) 28 (58.3) 8 (16.7) 12 (25.0) 14 (56.0) 14 (60) 7 (28.0) 18 (67.0) 10 (0.0) 15 (60.0) 12 (16.2) 36 (48.6) 16 (21.6) 22 (29.7) 22 (45.8) 14 (29.2) 16 (33.3) 14 (16.0) 14 (10) 24 (10) 20 (10) 20 (10) 20 (10) 20 (12.6) 20 (13.5) 20 (13.5) 14 (29.2) 16 (33.3) 16 (64.0) 14 (4.0) 22 (20.0) 21 (14.0) 22 (20.0) 20 (14.0) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 20 (10) 21 (20.0) 21 (10) 21 (20.0) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10) 21 (10)	Nitrofurantoin	46 (62.2)	8 (10.8)	20 (27.0)	34 (70.8)	6 (12.5)	8 (16.7)	18 (72.0)	6 (24.0)	1 (4.0)	18 (54.5)	6 (18.2)	9 (27.3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Amoxicillin	38 (51.4)	24 (32.4)	12 (16.2)	18 (37.5)	10 (20.8)	20 (41.7)	10(40.0)	6 (24.0)	9 (36.0)	20 (60.6)	2 (6.0)	11 (33.3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nalidixic Acid	52 (70.3)	8 (10.8)	14 (18.9)	28 (58.3)	8 (16.7)	12 (25.0)	10(40.0)	0 (0.0)	15 (60.0)	12 (36.4)	12 (36.4)	9 (27.3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ampicillin	36 (48.6)	16 (21.6)	22 (29.7)	22 (45.8)	14 (29.2)	12 (25.0)	14 (56.0)	4 (16.0)	7 (28.0)	18 (54.5)	10 (30.3)	5 (15.2)
42 (56.8) 8 (10.8) 24 (32.4) 18 (37.5) 14 (29.2) 16 (33.3) 4 (16.0) 12 (48.0) 9 (36.0) 20 (35.0) 52 (70.3) 12 (16.2) 10 (13.5) 26 (54.2) 6 (12.5) 16 (33.3) 16 (64.0) 2 (8.0) 7 (28.0) 22 (72.0) 56 (75.7) 6 (8.1) 12 (16.2) 28 (58.3) 8 (16.7) 12 (25.0) 18 (72.0) 6 (24.0) 1 (4.0) 22 (0.0) 56 (75.7) 6 (8.1) 12 (16.2) 28 (58.3) 8 (16.7) 12 (25.0) 18 (72.0) 5 (20.0) 14 (9.0) 24 (50.0) 14 (9.0) 24 (50.0) 14 (9.0) 24 (50.0) 14 (9.0) 24 (50.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14 (50.0) 5 (20.0) 14	Ciprofloxacin	52 (70.3)	12 (16.2)	10 (13.5)	30 (62.5)	4 (8.3)	14 (29.2)	20 (80.0)	4 (16.0)	1 (4.0)	24 (72.7)	2 (6.0)	7 (21.2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Erythromycin	42 (56.8)	8 (10.8)	24 (32.4)	18 (37.5)	14 (29.2)	16 (33.3)	4 (16.0)	12 (48.0)	9 (36.0)	20 (60.6)	2 (6.0)	11 (33.3)
$ \begin{array}{c} 56 \left(75.7\right) 6 \left(8.1\right) 12 \left(16.2\right) 28 \left(58.3\right) 8 \left(16.7\right) 12 \left(25.0\right) 18 \left(72.0\right) 6 \left(24.0\right) 11 \left(44.0\right) 24 \left(75.0\right) 24 \left(75.0\right) 14 \left(18.9\right) 10 \left(13.5\right) 14 \left(29.2\right) 16 \left(33.3\right) 18 \left(37.5\right) 14 \left(56.0\right) 0 0.0 11 \left(44.0\right) 24 \left(75.0\right) 12 \left(25.0\right) 14 \left(18.9\right) 10 \left(13.5\right) 12 \left(25.0\right) 13 \left(37.5\right) 14 \left(56.0\right) 0 0.0 0 11 \left(44.0\right) 24 \left(75.5\right) 12 \left(27.0\right) 12 \left(12.5\right) 12 \left(25.0\right) 13 \left(27.5\right) 14 \left(29.2\right) 14 \left(29.2\right) 14 \left(29.2\right) 14 \left(29.2\right) 14 \left(29.2\right) 14 \left(29.2\right) 12 \left(21.2\right) 12 \left(29.2\right) 11 \left(26.8\right) 12 \left(26.1\right) 12 \left(29.2\right) 12$	Gentamycin	52 (70.3)	12(16.2)	10 (13.5)	26 (54.2)	6 (12.5)	16 (33.3)	16 (64.0)	2 (8.0)	7 (28.0)	26 (78.8)	6 (18.2)	1 (3.0)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ceftriaxone	56 (75.7)	6 (8.1)	12 (16.2)	28 (58.3)	8 (16.7)	12 (25.0)	18 (72.0)	6 (24.0)	1 (4.0)	22 (66.7)	4 (12.1)	7 (21.2)
40 (54.1) $20 (27.0)$ 14 (18.9) 18 (37.5) 10 (20.8) $20 (41.7)$ 16 (64.0) 4 (16.0) 5 (20.0) 14 (12.5) Sensitive: I: Intermediate: R: Resistant; CON: Coagulase Negative: Values in parenthesis represent percentages. Table 5: Antibiotic Susceptibility Profile of Gram Negative Urinary Bacterial Isolates from Preg $6 (4.0) - 4 (16.0) - 5 (20.0)$ $14 (12.5) - 12 (11.3)$ $18 (54.5) - 6 (18.2)$ $9 (27.2) - 28 (68.3) - 6 (14.6)$ $7 (17.1) - 8 (12.5) - 12 (11.3)$ $8 (75.5) - 14 (13.2) - 12 (11.3)$ $18 (54.5) - 6 (18.2) - 9 (27.2) - 28 (68.3) - 6 (14.6) - 7 (17.1)$ $8 (17.5) - 12 (11.3) - 12 (11.3) - 13 (39.4) - 16 (39.0) - 8 (19.5) - 11 (26.8) - 12 (10.0) - 12 (10.0) - 10$	Chloramphenicol	50 (67.6)	14 (18.9)	10 (13.5)	14 (29.2)	16 (33.3)	18 (37.5)	14 (56.0)	0(0.0)	11 (44.0)	24 (72.7)	(0.0) 0	9 (27.3)
: S: Sensitive; I: Intermediate; R: Resistant; CoN: Coagulase Negative; Values in parenthesis represent percentages. Table 5: Antibiotic Susceptibility Profile of Gram Negative Urinary Bacterial Isolates from Pre E . coli (n = 106) <u>Proteus spp (n = 33)</u> <u>P. aeruginosa (n = 41)</u> E . coli (n = 106) <u>Proteus spp (n = 33)</u> <u>P. aeruginosa (n = 41)</u> E . coli (n = 106) <u>No %</u> No % <u>N</u>	Tetracycline	40 (54.1)	20 (27.0)	14 (18.9)	18 (37.5)	10 (20.8)	20 (41.7)	16 (64.0)	4 (16.0)	5 (20.0)	14 (42.4)	8 (24.2)	11 (33.3)
E. cofi (n = 106) Proteux sph (n = 33) P aeruginosa (n=41) S 1 No % No % <th>Keys: S: Se</th> <th>nsitive; I: Int Table 5: Ar</th> <th>ermediate;] ntibiotic Su</th> <th>R: Resistant; usceptibili</th> <th>; CoN: Coag ty Profile</th> <th>ulase Negai of Gram 1</th> <th>tive; Values i Negative U</th> <th>n parenthesi rinary Ba</th> <th>is represent] cterial Isol</th> <th>percentages. ates from</th> <th>Pregnant</th> <th>Women</th> <th></th>	Keys: S: Se	nsitive; I: Int Table 5: Ar	ermediate;] ntibiotic Su	R: Resistant; usceptibili	; CoN: Coag ty Profile	ulase Negai of Gram 1	tive; Values i Negative U	n parenthesi rinary Ba	is represent] cterial Isol	percentages. ates from	Pregnant	Women	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			E. coli (n = 1)	106)	Prote	u) dds sna	= 33)	P. a6	eruginosa (n	=41)	K. pne	<i>umoniae</i> (n	=16)
No % No % <t< th=""><th></th><th>S</th><th>-</th><th>Я</th><th>S</th><th>-</th><th>2</th><th>S</th><th>-</th><th>ж</th><th>S</th><th>ч</th><th>2</th></t<>		S	-	Я	S	-	2	S	-	ж	S	ч	2
\circ 80 (75.5)14 (13.2)12 (11.3)18 (54.5)6 (18.2)9 (27.2)28 (68.3)6 (14.6)7 (17.1)8 (50.0) n 74 (69.8)10 (9.4)22 (20.8)24 (72.7)8 (24.2)1 (3.0)22 (53.7)8 (19.5)11 (26.8)12 (75.0)ioin58 (54.7)20 (18.9)28 (26.4)16 (48.5)4 (12.1)13 (39.4)16 (39.0)8 (19.5)17 (41.5)10 (62.5)ioin58 (54.7)16 (15.1)32 (30.2)20 (60.6)2 (6.1)11 (33.3)24 (58.5)2 (4.9)15 (36.6)10 (62.5)icid58 (54.7)16 (15.1)32 (30.2)20 (60.6)2 (6.1)11 (33.3)24 (58.5)2 (4.9)15 (36.6)10 (62.5)icid58 (54.7)16 (18.9)38 (35.8)22 (66.7)0 (0.0)11 (33.3)24 (58.5)2 (4.9)15 (36.6)10 (62.5)icid58 (54.7)16 (18.9)38 (35.8)22 (66.7)0 (0.0)11 (33.3)12 (29.3)17 (41.5)8 (50.0)in76 (71.7)6 (5.7)24 (22.6)12 (36.4)4 (12.1)17 (51.5)12 (29.3)17 (41.5)8 (50.0)in76 (71.7)6 (5.7)24 (22.6)12 (64.8.5)6 (18.2)11 (33.3)22 (53.7)8 (19.5)11 (41.5)8 (50.0)in76 (71.7)6 (5.7)24 (29.9)12 (36.4)8 (12.1)17 (51.5)12 (29.3)14 (34.1)15 (36.6)6 (37.5)in76 (79.9)26 (24.5)16 (48.5)6 (18.2)11 (33.3)	Antibiotics	No %	No %	No %	No %	No %	No %	No %	No %	No %	No %	No %	No %
n 74 (69.8) 10 (9.4) 22 (20.8) 24 (72.7) 8 (24.2) 1 (3.0) 22 (53.7) 8 (19.5) 11 (26.8) 12 (75.0) coin 58 (54.7) 20 (18.9) 28 (26.4) 16 (48.5) 4 (12.1) 13 (39.4) 16 (39.0) 8 (19.5) 17 (41.5) 10 (62.5) ocid 58 (54.7) 16 (15.1) 32 (30.2) 20 (60.6) 2 (6.1) 11 (33.3) 24 (58.5) 2 (4.9) 15 (36.6) 10 (62.5) oenicol 48 (45.3) 20 (18.9) 38 (35.8) 22 (66.7) 0 (0.0) 11 (33.3) 24 (58.5) 2 (4.9) 15 (36.6) 10 (62.5) n 76 (71.7) 6 (5.7) 24 (25.4) 4 (12.1) 17 (51.5) 12 (29.3) 17 (41.5) 8 (50.0) n 76 (71.7) 6 (5.7) 24 (22.6) 12 (36.4) 4 (12.1) 17 (51.5) 12 (29.3) 14 (34.1) 15 (36.6) 6 (37.5) n 76 (71.7) 6 (5.7) 24 (28.5) 6 (18.2) 11 (33.3) 22 (53.7) 8 (19.5) 11 (26.8) 8 (50.0)	Ceftriazone	80 (75.5)	14 (13.2)		18 (54.5)	6 (18.2)	9 (27.2)	28 (68.3)	6 (14.6)	7 (17.1)	8 (50.0)	2 (12.5)	6 (37.5)
toin 58 (54.7) 20 (18.9) 28 (26.4) 16 (48.5) 4 (12.1) 13 (39.4) 16 (39.0) 8 (19.5) 17 (41.5) 10 (62.5) kid 58 (54.7) 16 (15.1) 32 (30.2) 20 (60.6) 2 (6.1) 11 (33.3) 24 (58.5) 2 (4.9) 15 (36.6) 10 (62.5) kid 45.3) 20 (18.9) 38 (35.8) 22 (66.7) 0 (0.0) 11 (33.3) 24 (58.5) 2 (4.9) 15 (36.6) 10 (62.5) n 76 (71.7) 6 (5.7) 22 (66.7) 0 (0.0) 11 (33.3) 12 (29.3) 17 (41.5) 8 (50.0) n 76 (71.7) 6 (5.7) 24 (22.6) 12 (68.7) 0 (0.0) 11 (33.3) 22 (53.7) 8 (19.5) 11 (41.5) 8 (50.0) n 76 (71.7) 6 (5.7) 24 (22.6) 12 (68.2) 11 (33.3) 22 (53.7) 8 (19.5) 11 (26.8) 8 (50.0) k 42 (39.6) 22 (20.8) 42 (39.6) 12 (36.4) 8 (24.2) 13 (39.4) 18 (43.9) 10 (24.4) 13 (25.0) k 42 (39.6) 22 (20.8) 42 (39.6) 12 (36.8) 4 (35.9) 6 (37.5) 4 (9.8) 6 (37.5) k 82 (77.4) 10 (9.4) 14 (13.2) 20 (60.6) 4 (12.1) 9 (27.2) 28 (68.3) 4 (9.8) 9 (22.0) k 42 (39.6) 26 (20.8) 22 (20.8) 20 (60.6) 4 (12.1) 9 (27.2) 28 (68.3) 4 (9.8) 9 (22.0) k 42 (39	Gentamycin	74 (69.8)	10 (9.4)	22 (20.8)	24 (72.7)	8 (24.2)	1 (3.0)	22 (53.7)	8 (19.5)	11 (26.8)	12 (75.0)	0(0.0)	4 (25.0)
weid $58(54.7)$ $16(15.1)$ $32(30.2)$ $20(60.6)$ $2(6.1)$ $11(33.3)$ $24(58.5)$ $2(4.9)$ $15(36.6)$ $10(62.5)$ n $76(71.7)$ $6(5.7)$ $23(35.8)$ $22(66.7)$ $0(0.0)$ $11(33.3)$ $12(29.3)$ $17(41.5)$ $8(50.0)$ n $76(71.7)$ $6(5.7)$ $24(22.6)$ $12(36.4)$ $4(12.1)$ $17(51.5)$ $12(29.3)$ $14(34.1)$ $15(36.6)$ $6(37.5)$ n $76(71.7)$ $6(5.7)$ $24(22.6)$ $12(36.4)$ $4(12.1)$ $17(51.5)$ $12(29.3)$ $14(34.1)$ $15(36.6)$ $6(37.5)$ n $76(71.7)$ $6(5.7)$ $24(22.6)$ $12(36.4)$ $4(12.1)$ $17(51.5)$ $12(29.3)$ $14(34.1)$ $15(36.6)$ $6(37.5)$ cin $54(50.9)$ $26(24.5)$ $16(48.5)$ $6(18.2)$ $11(33.3)$ $22(53.7)$ $8(19.5)$ $11(26.8)$ $8(50.0)$ n $8(27.4)$ $10(9.4)$ $12(13.2)$ $20(60.6)$ $4(12.1)$ $9(27.2)$ $28(68.3)$ $4(9.8)$ $9(22.0)$ $14(87.5)$ cin $82(77.4)$ $10(9.4)$ $14(13.2)$ $20(60.6)$ $6(18.2)$ $7(21.2)$ $20(48.8)$ $10(24.4)$ $11(76.8)$ $4(75.0)$ dot $60(56.6)$ $24(72.6)$ $20(60.6)$ $6(18.2)$ $7(21.2)$ $20(48.8)$ $4(9.8)$ $9(22.0)$ $14(87.5)$ in $82(77.4)$ $10(9.4)$ $27(20.8)$ $20(60.6)$ $6(18.2)$ $7(21.2)$ $20(48.8)$ $4(9.8)$ $9(22.0)$ $14(87.5)$ in $60(56.6)$ 2	Nitrofurantoin	58 (54.7)	20 (18.9)	28 (26.4)	16 (48.5)	4 (12.1)	13 (39.4)	16 (39.0)	8 (19.5)	17 (41.5)	10 (62.5)	6 (37.5)	0(0.0)
enicol48 (45.3)20 (18.9)38 (35.8)22 (66.7)0 (0.0)11 (33.3)12 (29.3)17 (41.5)8 (50.0)n76 (71.7)6 (5.7)24 (22.6)12 (36.4)4 (12.1)17 (51.5)12 (29.3)14 (34.1)15 (36.6)6 (37.5)cin54 (50.9)26 (24.5)26 (24.5)16 (48.5)6 (18.2)11 (33.3)22 (53.7)8 (19.5)11 (26.8)8 (50.0)e42 (39.6)22 (20.8)42 (39.6)12 (36.4)8 (24.2)13 (39.4)18 (43.9)10 (24.4)13 (31.7)4 (25.0)cin82 (77.4)10 (9.4)14 (13.2)20 (60.6)4 (12.1)9 (27.2)28 (68.3)4 (9.8)9 (22.0)14 (87.5)60 (56.6)24 (22.6)27 (20.8)20 (60.6)6 (18.2)7 (21.2)20 (48.8)10 (24.4)13 (31.7)4 (25.0)	Nalidixic Acid	58 (54.7)	16 (15.1)	32 (30.2)	20 (60.6)	2 (6.1)	11 (33.3)	24 (58.5)	2 (4.9)	15 (36.6)	10 (62.5)	2 (12.5)	4 (25.0)
n 76 (71.7) 6 (5.7) 24 (22.6) 12 (36.4) 4 (12.1) 17 (51.5) 12 (29.3) 14 (34.1) 15 (36.6) 6 (37.5) cin 54 (50.9) 26 (24.5) 16 (48.5) 6 (18.2) 11 (33.3) 22 (53.7) 8 (19.5) 11 (26.8) 8 (50.0) e 42 (39.6) 22 (24.5) 16 (48.5) 6 (18.2) 11 (33.3) 22 (53.7) 8 (19.5) 11 (26.8) 8 (50.0) e 42 (39.6) 22 (29.8) 42 (39.6) 12 (36.4) 8 (24.2) 13 (43.9) 10 (24.4) 13 (31.7) 4 (25.0) e 42 (39.6) 22 (20.8) 42 (39.6) 6 (12.1) 9 (27.2) 28 (68.3) 4 (9.8) 9 (22.0) 14 (87.5) cin 82 (77.4) 10 (9.4) 14 (13.2) 20 (60.6) 6 (18.2) 70.12) 20 (48.8) 10.0244) 11.068) $4.05.0$) fold 560 (566) $24.22.6$) 20 (60.6) $6.182.7$ 70.12 20 (48.8) 10.0244) <t< td=""><td>Chloramphenicol</td><td>48 (45.3)</td><td>20 (18.9)</td><td>38 (35.8)</td><td>22 (66.7)</td><td>0 (0.0)</td><td>11 (33.3)</td><td>12 (29.3)</td><td>12 (29.3)</td><td>17 (41.5)</td><td>8 (50.0)</td><td>0 (0.0)</td><td>8 (50.0)</td></t<>	Chloramphenicol	48 (45.3)	20 (18.9)	38 (35.8)	22 (66.7)	0 (0.0)	11 (33.3)	12 (29.3)	12 (29.3)	17 (41.5)	8 (50.0)	0 (0.0)	8 (50.0)
cin $54 (50.9)$ $26 (24.5)$ $26 (24.5)$ $16 (48.5)$ $6 (18.2)$ $11 (33.3)$ $22 (53.7)$ $8 (19.5)$ $11 (26.8)$ $8 (50.0)$ e $42 (39.6)$ $22 (20.8)$ $42 (39.6)$ $12 (36.4)$ $8 (24.2)$ $13 (39.4)$ $18 (43.9)$ $10 (24.4)$ $13 (31.7)$ $4 (25.0)$ e $42 (39.6)$ $12 (30.6)$ $4 (12.1)$ $9 (27.2)$ $28 (68.3)$ $4 (9.8)$ $9 (22.0)$ $14 (87.5)$ e $60 (56.6)$ $24 (22.6)$ $22 (20.8)$ $20 (60.6)$ $6 (18.2)$ $7 (21.2)$ $28 (68.3)$ $4 (9.8)$ $9 (22.0)$ $14 (87.5)$ $60 (56.6)$ $24 (22.6)$ $22 (20.8)$ $20 (60.6)$ $6 (18.2)$ $7 (21.2)$ $20 (48.8)$ $10 (24.4)$ $11 (26.8)$ $4 (75.0)$	Amoxicillin	76 (71.7)	6 (5.7)	24 (22.6)	12 (36.4)	4 (12.1)	17 (51.5)	12 (29.3)	14 (34.1)	15 (36.6)	6 (37.5)	4 (25.0)	6 (37.5)
ic 42 (39.6) 22 (20.8) 42 (39.6) 12 (36.4) 8 (24.2) 13 (39.4) 18 (43.9) 10 (24.4) 13 (31.7) 4 (25.0) cin 82 (77.4) 10 (9.4) 14 (13.2) 20 (60.6) 4 (12.1) 9 (27.2) 28 (68.3) 4 (9.8) 9 (22.0) 14 (87.5) 60 (56.6) 24 (22.6) 27 (20.8) 20 (60.6) 6 (18.2) 7 (21.2) 20 (48.8) 10 (24.4) 11 (26.8) 4 (25.0)	Erythromycin	54 (50.9)	26 (24.5)		16 (48.5)	6 (18.2)	11 (33.3)	22 (53.7)	8 (19.5)	11 (26.8)	8 (50.0)	4 (25.0)	4 (25.0)
cin 82 (77.4) 10 (9.4) 14 (13.2) 20 (60.6) 4 (12.1) 9 (27.2) 28 (68.3) 4 (9.8) 9 (22.0) 14 (87.5) 60 (56.6) 24 (22.6) 22 (20.8) 20 (60.6) 6 (18.2) 7 (21.2) 20 (48.8) 10 (24.4) 11 (26.8) 4 (25.0)	Tetracycline	42 (39.6)	22 (20.8)		12 (36.4)	8 (24.2)	13 (39.4)	18 (43.9)	10 (24.4)	13 (31.7)	4 (25.0)	6 (37.5)	6 (37.5)
60 (56 6) - 24 (22 6) - 22 (20 8) - 20 (60 6) - 6 (18 2) - 7 (21 2) - 20 (48 8) - 10 (24 4) - 11 (26 8) - 4 (25 0)	Ciprofloxacin	82 (77.4)	10 (9.4)	14 (13.2)	20 (60.6)	4 (12.1)	9 (27.2)	28 (68.3)	4 (9.8)	9 (22.0)	14 (87.5)	0 (0.0)	2 (12.5)
(0.07) + (0.07) = (0.01) + (0.01) = (0.01) + (0.01) = (0.01) + (0.01) = (0.02) = (Ampicillin	60 (56.6)	24 (22.6)	22 (20.8)		6 (18.2)	7 (21.2)	20 (48.8)	10 (24.4)	11 (26.8)	4 (25.0)	6 (37.5)	6 (37.5)

Akinjogunla et al - Slime Producing Multidrug-resistant Bacterial Isolates in Urine

Akinjogunla et al - Slime Producing Multidrug-resistant Bacterial Isolates in Urine

		-						-	
MAR	SA	SP	CS	EF	EC	PS	РА	КР	Total
Index	No (%)	No (%)	No (%)	No (%)	No (%)	No (%)	No (%)	No (%)	No (%)
0.0	9 (12.2)	5 (10.4)	4 (16.0)	6 (18.2)	15 (14.2)	8 (24.2)	4 (9.8)	3 (18.8)	54 (14.4)
0.1	9 (12.2)	7 (14.6)	3 (12.0)	3 (9.1)	13 (12.3)	5 (15.2)	6 (14.6)	4 (25.0)	50 (13.3)
0.2	11 (14.9)	6 (12.5)	3 (12.0)	7 (21.2)	18 (17.0)	5 (15.2)	4 (9.8)	3 (18.0)	57 (15.2)
0.3	14 (18.9)	8 (16.7)	8 (32.0)	5 (15.2)	20 (18.9)	3 (9.1)	7 (17.1)	2 (12.5)	67 (17.8)
0.4	8 (10.8)	6 (12.5)	3 (12.0)	4 (12.1)	11 (10.4)	6 (18.2)	7 (17.1)	1 (6.3)	46 (12.2)
0.5	4 (5.4)	5 (10.4)	1 (4.0)	1 (3.0)	7 (6.6)	2 (6.1)	5 (12.2)	3 (18.8)	28 (7.4)
0.6	6 (8.1)	2 (4.2)	1 (4.0)	2 (6.1)	5 (4.7)	1 (3.0)	3 (7.3)	0 (0.0)	20 (5.3)
0.7	6 (8.1)	4 (8.3)	2 (8.0)	3 (9.1)	3 (2.8)	0 (0.0)	4 (7.8)	0 (0.0)	22 (5.9)
0.8	1 (1.4)	3 (6.3)	0 (0.0))	2 (6.1)	5 (4.7)	2 (6.1)	1 (2.4)	0 (0.0)	14 (3.7)
0.9	3 (4.1)	0 (0.0)	0 (0.0)	0 (0.0)	3 (2.8)	1 (3.0)	0 (0.0)	0 (0.0)	7 (1.9)
1.0	3 (4.1)	2 (4.2)	0 (0.0)	0 (0.0)	6 (5.7)	0 (0.0)	0 (0.0)	0 (0.0)	11 (2.9)

Table 6: Multidrug Resistant Index of Bacterial Isolates from Urine Specimens of Pregnant Women

Keys: SA: *S. aureus*; SP: *S. pyogenes*; CS: CoN *Staphylococcus* spp; EF: *E. faecalis*; EC: *E coli*; PS: *Proteus* spp PA: *P. aeruginosa*; KP: *K. pneumoniae*, **Values in parenthesis represent percentages**

DISCUSSION

The laboratory screening techniques in specialized areas of medicine have transformed and improved the art of diagnosis (Abdullahi and Thairu, 2015). The MSU specimens are frequently sent for analysis with the intention of reducing morbidity and mortality attributable to UTI. The global prevalence of bacteriuria in pregnancy varies in various studies that have been conducted (Girishbabu, 2011). In our study, the prevalence of bacteriuria among the pregnant women attending antenatal clinics was 30.2 % and this value was higher than 20.0 % reported by Assefa et al. (2008) in Addis Ababa, Ethiopia and lower than 47.5 % reported by Okonko et al. (2009) in Ibadan, Nigeria. The discrepancies in prevalence of bacteriuria among the pregnant women could be attributed to the socioeconomic status, gestational age, lack of personal and environmental hygiene.

In relation to age groups, the highest SBU was among the subjects within ages 21-30 yrs, followed by age group ≤ 20 yrs, 31-40 yrs and the lowest SBU was obtained from the subjects aged ≥ 41 yrs. This finding corroborated the results of Ahmad (2012) who reported the highest SBU (38.1 %) among the subjects between ages 21 and 30 yrs in Kashmir, but differs with Ezeigbo et al (2016) who reported the highest SBU among the subjects

within ages 31- 40 yrs. The high SBU among the reproductive age groups especially those within ages ≤ 20 yrs could be ascribed to early marriage and childbearing. The significant outcomes were observed regarding the prevalence of SBU based on gestational periods. The prevalence of SBU based on trimesters in this study was in consistent with the report of Boye et al. (2012) who obtained the highest SBU among the subjects in their second trimester. This result was, however, not in accord with the report by Okonko et al. (2009) who had the highest SBU among the subjects in their third trimester.

The use and reliability of urine nitrite and leukocyte esterase dipstick tests for detection of SBU have been investigated. Of the 245 MSU specimens, 30 (12.2 %) had nitrite (NIT) only, 42 (17.1 %) had leukocyte esterase (LE) only, while 20 (8.2 %) had both NIT and LE. The values obtained for NIT and LE in this study were lower than 21.5 % (NIT) and 30.7 % (LE) reported by Fernandes et al. (2018). The MSU cultures of the subjects had E coli, S. aureus, S. pyogenes, Proteus spp, P. aeruginosa, K. pneumoniae, CoN Staphylococcus spp and E. faecalis. The isolation of these bacteria from the MSU was in harmony with the reports of many researchers (Amadi et al. 2007). In our study, E. coli had the highest occurrence (28.2%) and this finding agreed with the report of Turpin et al. (2007) in Kumasi, Ghana. The high occurrence

of E. coli could be due to poor genital hygienic practices by the subjects who may find it difficult to suitably clean their anus/genital after defecating or urinating (Imade et al. 2010).

The varied percentages of slime producing bacterial isolates were obtained from the MSU of the subjects. The occurrence of slime producing S. aureus and E coli in this study agreed with Arslan and Zkardes (2007) and Dadawala et al. (2010) who reported the occurrence of slime S. aureus and E coli in samples using Congo Red Agar. The resistance of the slime producing bacterial isolates to Nitrofurantoin, Ampicillin, Chloramphenicol and Tetracycline were observed in this study and this agreed with Ahmed et al. (2000) who reported the isolation of Ampicillin, Chloramphenicol, Tetracycline and Nitrofurantoin resistant bacterial isolates from the MSU of the subjects in Sudan. Our study also showed the occurrence of MDR bacterial isolates from the MSU specimens of the subjects and this confirmed the findings of Mahroop-Raja and John (2015) and Ekwealor et al. (2016) in Tamil Nadu, India and Awka, Nigeria, respectively.

The occurrence of slime producing MDR **bacterial isolates** in MSU of the subjects in this locality have been established, consequently, there is a need to continuously monitor the antibiotic susceptibility profiles of slime producing bacteria implicated in UTI and also endeavor to avert and/or curtail bacterial slime-associated infections.

REFERENCES

- Abdullahi HI, Thairu Y. (2015). Asymptomatic bacteriuria among pregnant women attending antenatal: evaluation of screening test, IOSR Journal Of Pharmacy, 5 (8):41-47.
- Ahmad S. (2012). Pattern of urinary tract infection in Kashmir and antimicrobial susceptibility. Bangladesh Medical Research Council Bulletin, 38(.3): 79-83.
- Ahmed AA, Osman H, Musa HA, Ahmed AB, Karrar Z. (2000). Antimicrobial agent resistance in bacterial isolates from patients with diarrhoea and UTIs in the Dudan. American Journal of Tropical Medicine and Hygiene, 5:259–263.
- Akinjogunla OJ, Adenugba IT, Inyang UO. (2017). Extracellular hydrolytic enzymes and location of multidrug resistance markers in urinary bacterial

- of E. coli could be due to poor genital hygienic isolates, World Journal of Biomedical Research, 4 (1): 50practices by the subjects who may find it difficult 60.
 - Akinjogunla OJ, Ehinmore I, Atang TD., Akpan I. (2018). Antibacterial efficacy of aqueous leaf extracts of C. citratus (Poaceae) and B. verticillata (Rubiaceae) on biofilm producing uropathogenic bacterial isolates. World Journal of Applied Science and Technology. 10(1b):1-8.
 - Akyar I, Fidan I, Rota S. (1998). Koagülaznegatif stafilokoklarda slime faktör yapiminin üç farkli yöntemle aras tirilmasi, tür tayini ve antibiyotik direnci. Mikrobiyol Bült.; 32:15–22
 - Amadi ES, Enemuo OB, Uneke CJ, Nwosu OK, Onyeagba RA, Ugbogu OC. (2007). Asymptomatic bacteriuria among pregnant women in Abakaliki, Ebonyi State, Nigeria. Journal of Medical Sciences, 7(4):698–700.
 - Amiri M, Lavasani Z, Norouzirad R, Najibpour R, Mohamadpour M, Nikpoor AR, Raeisi M, Marzouni HZ. (2015). Prevalence of UTI among pregnant women and its complications in their newborns during the birth in the hospitals of Dezful City, Iran, 2012 – 2013. Iranian Red Crescent Medical Journal, 17 (8): 1-8.
 - Ammendolia MG, Di-Rosa R, Montanar OL, Arciolamm CR, Baldassarri L. (1999). Slime production and expression of the slime-associated antigen by staphylococcal clinical isolates. Journal of Clinical Microbiology, 37: 3235-3238.
 - Arslan S, Zkardes F. (2007). Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples, Mem Inst Oswaldo Cruz, Rio de Janeiro, 102(1): 29-33.
 - Assefa A, Asrat D, Woldeamanuel Y, Abdella A. (2008). Bacterial profile and drug susceptibility patterns of UTI in pregnant women at Tikur Anbessa specialized ospital Addis Ababa, Ethiopia. Ethiopian Medical Journal, 46(3):227–235.
 - Barnick CGW, Cardozo LD. (1991). The lower urinary tract in pregnancy, labour and puerperium. In: Studd J, editor. Progress in Obstetrics and Gynaecology Vol. 9.London: Churchill Livingstone, pp 195–204.
 - Blomberg B, Olsen BE, Hinderaker SG, Langeland N, Gasheka P, Jureen R, Kvale G, Midtvedt T. (2005). Antimicrobial resistance in urinary bacterial isolates from pregnant women in rural Tanzania. Scandinavian Journal of Infectious Diseases, 37: 262-268.
 - Boye A, Siakwa PM, Boampong JN, Koffuor GA, Amoateng P, Penu G. (2012). Asymptomatic 1 of

- urinary tract infections in pregnant women attending Imade PE, Izekor PE, Eghafona NO, Enabulele OI., Ophori antenatal clinic in Cape Coast, Ghana, E3 Journal of Medical Research, 1(6): 074-083.
- Charles BM. (2011). Urinary tract infections, infectious University of South Carolina Press. USA. Pp 234-265.
- Clinical and Laboratories Standards Institute (2005). Performance Standards for Antimicrobial Susceptibility Testing, 15th informational supplement,; M100-S15. Wayne (PA).
- Dadawala AI, Chauhan HC, Chandel BS, Shah NM, Kher HN. (2010). Assessment of E. coli isolates for in vitro biofilm production, Veterinary World, 3(8): 364-366.
- Dalzell JE, Lefevre ML. (2000). Urinary tract infection of pregnancy. American Academy of Family Physicians, 61: 713 - 721.
- Ekwealor PA, Ugwu MC, Ezeobi I, Amalukwe G, Ugwu BC, Okezie U, Stanley C, Esimon C. (2016). Antimicrobial evaluation of bacterial isolates from urine specimen of patients with complaints of urinary tract infections in Awka, Nigeria. International Journal of Microbiology, 2016: 1-6.
- Ezeigbo OR, Nnadozie RIA, Asuoha-Chuks N, Ojiako VU, Awurumv IN, Ugochukwu MG. (2016). Incidence of UTI among pregnant women attending antenatal clinics at some selected hospitals in Aba, Nigeria. International Journal of Current Microbiology and .Applied Science, 5(1): 193-199.
- Fernandes DJ, Jaidev MD, Castelino DN. (2018). Utility of dipstick test (nitrite and leukocyte esterase) and microscopic analysis of urine when compared to culture in the diagnosis of UTI in children. International Journal of Contemporary Pediatrics, 5(1):156-160.
- Freeman DJ, Falkner FR, Keane CT. (1989). New method for detecting slime production by coagulase negative Staphylococci. Journal of Clinical Pathology, 42:872-874.
- Gilstrap LC, Ramin SM. (2001). Urinary tract infections during pregnancy. Obstetric and Gynaecology Clinics North America, 28(3): 581-591.
- Girishbabu RJ. (2011). Asymptomatic bacteriuria in pregnancy. International Journal of Biological and Medical Research, 2(3):740-742.

- E. (2010). Asymptomatic bacteriuria among pregnant women. North American Journal of Medical Sciences, 2(6): 263–266.
- disease. In: Microbiology and Immunology. Jan MB, John DT, Sentry A. (2002). High Prevalence of oxacillin-resistant S. aureus isolates from hospitalized patients in Asia-Pacific and South Africa: Results from SENTRY Antimicrobial Surveillance Program, 1998- 1999. Antimicrobial Agents and Chemotherapy, 46(3): 879-888.
 - Millar LK, Cox SM. (1997). Urinary tract infections complicating pregnancy. Infectious Diseases Clinics of North America, 11: 13-26.
 - Macejko AM, Schaeffer AJ. (2007). Asymptomatic bacteriuria and symptomatic UTIs during pregnancy. Urologic Clinics of North America, 34: 35-42.
 - Mahroop RMM, John SA. (2015) Multidrug resistance profile of urinary tract infected gram positive pathogenic bacterial isolates, International Journal of Infections, 2(1):227-274.
 - Okonko IO, Ijandipe LA, Ilusanya OA, Donbraye-Emmanuel OB, Ejembi J, Udeze AO (2009). Incidence of urinary tract infection among pregnant women in Ibadan, South -Western Nigeria. African Journal of Biotechnology, 8:6649-6657.
 - Ratna B, Sharan KM. (2017). Rapid nitrite dip stick vs urine culture for diagnosis of urinary tract infections (UTI): Laboratory prospective. International Journal of Biomedical Research, 8(4): 204-209.
 - Rupp ME, Archer GD. (1994). Coagulase-negative staphylococci: pathogens associated with medical progress. Clinical Infectious Diseases, 19: 231-245.
 - Semeniuk H, Church D. (1999). Evaluation of the leukocyte esterase and nitrite urine dipstick screening tests for detection of bacteriuria in women with suspected uncomplicated UTIs. Journal of Clinical Microbiology.37(9):3051-3052.
 - Turpin CA, Minkah B, Danso KA, Frimpong EH. (2007). Asymptomatic bacteriuria in pregnant women attending antenatal clinic at Komfo Anokye Teaching Hospital, Kumasi, Ghana. Ghana Medical Journal, $\hat{41}(1)$:26–29.